3.16 \(\int \tan (c+d x) (a+i a \tan (c+d x))^2 \, dx\)

Optimal. Leaf size=62 \[ \frac {i a^2 \tan (c+d x)}{d}-\frac {2 a^2 \log (\cos (c+d x))}{d}-2 i a^2 x+\frac {(a+i a \tan (c+d x))^2}{2 d} \]

[Out]

-2*I*a^2*x-2*a^2*ln(cos(d*x+c))/d+I*a^2*tan(d*x+c)/d+1/2*(a+I*a*tan(d*x+c))^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 62, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {3527, 3477, 3475} \[ \frac {i a^2 \tan (c+d x)}{d}-\frac {2 a^2 \log (\cos (c+d x))}{d}-2 i a^2 x+\frac {(a+i a \tan (c+d x))^2}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]*(a + I*a*Tan[c + d*x])^2,x]

[Out]

(-2*I)*a^2*x - (2*a^2*Log[Cos[c + d*x]])/d + (I*a^2*Tan[c + d*x])/d + (a + I*a*Tan[c + d*x])^2/(2*d)

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3477

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^2, x_Symbol] :> Simp[(a^2 - b^2)*x, x] + (Dist[2*a*b, Int[Tan[c + d
*x], x], x] + Simp[(b^2*Tan[c + d*x])/d, x]) /; FreeQ[{a, b, c, d}, x]

Rule 3527

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d*
(a + b*Tan[e + f*x])^m)/(f*m), x] + Dist[(b*c + a*d)/b, Int[(a + b*Tan[e + f*x])^m, x], x] /; FreeQ[{a, b, c,
d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] &&  !LtQ[m, 0]

Rubi steps

\begin {align*} \int \tan (c+d x) (a+i a \tan (c+d x))^2 \, dx &=\frac {(a+i a \tan (c+d x))^2}{2 d}-i \int (a+i a \tan (c+d x))^2 \, dx\\ &=-2 i a^2 x+\frac {i a^2 \tan (c+d x)}{d}+\frac {(a+i a \tan (c+d x))^2}{2 d}+\left (2 a^2\right ) \int \tan (c+d x) \, dx\\ &=-2 i a^2 x-\frac {2 a^2 \log (\cos (c+d x))}{d}+\frac {i a^2 \tan (c+d x)}{d}+\frac {(a+i a \tan (c+d x))^2}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 51, normalized size = 0.82 \[ \frac {a^2 \left (-4 i \tan ^{-1}(\tan (c+d x))-\tan ^2(c+d x)+4 i \tan (c+d x)-4 \log (\cos (c+d x))\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]*(a + I*a*Tan[c + d*x])^2,x]

[Out]

(a^2*((-4*I)*ArcTan[Tan[c + d*x]] - 4*Log[Cos[c + d*x]] + (4*I)*Tan[c + d*x] - Tan[c + d*x]^2))/(2*d)

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 93, normalized size = 1.50 \[ -\frac {2 \, {\left (3 \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + 2 \, a^{2} + {\left (a^{2} e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )\right )}}{d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+I*a*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

-2*(3*a^2*e^(2*I*d*x + 2*I*c) + 2*a^2 + (a^2*e^(4*I*d*x + 4*I*c) + 2*a^2*e^(2*I*d*x + 2*I*c) + a^2)*log(e^(2*I
*d*x + 2*I*c) + 1))/(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

giac [B]  time = 0.61, size = 116, normalized size = 1.87 \[ -\frac {2 \, {\left (a^{2} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) + 2 \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) + 3 \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) + 2 \, a^{2}\right )}}{d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+I*a*tan(d*x+c))^2,x, algorithm="giac")

[Out]

-2*(a^2*e^(4*I*d*x + 4*I*c)*log(e^(2*I*d*x + 2*I*c) + 1) + 2*a^2*e^(2*I*d*x + 2*I*c)*log(e^(2*I*d*x + 2*I*c) +
 1) + 3*a^2*e^(2*I*d*x + 2*I*c) + a^2*log(e^(2*I*d*x + 2*I*c) + 1) + 2*a^2)/(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*
I*d*x + 2*I*c) + d)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 67, normalized size = 1.08 \[ \frac {2 i a^{2} \tan \left (d x +c \right )}{d}-\frac {a^{2} \left (\tan ^{2}\left (d x +c \right )\right )}{2 d}+\frac {a^{2} \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{d}-\frac {2 i a^{2} \arctan \left (\tan \left (d x +c \right )\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)*(a+I*a*tan(d*x+c))^2,x)

[Out]

2*I/d*a^2*tan(d*x+c)-1/2*a^2*tan(d*x+c)^2/d+1/d*a^2*ln(1+tan(d*x+c)^2)-2*I/d*a^2*arctan(tan(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.79, size = 55, normalized size = 0.89 \[ -\frac {a^{2} \tan \left (d x + c\right )^{2} + 4 i \, {\left (d x + c\right )} a^{2} - 2 \, a^{2} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) - 4 i \, a^{2} \tan \left (d x + c\right )}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+I*a*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/2*(a^2*tan(d*x + c)^2 + 4*I*(d*x + c)*a^2 - 2*a^2*log(tan(d*x + c)^2 + 1) - 4*I*a^2*tan(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 3.74, size = 40, normalized size = 0.65 \[ \frac {a^2\,\left (4\,\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )-{\mathrm {tan}\left (c+d\,x\right )}^2+\mathrm {tan}\left (c+d\,x\right )\,4{}\mathrm {i}\right )}{2\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)*(a + a*tan(c + d*x)*1i)^2,x)

[Out]

(a^2*(4*log(tan(c + d*x) + 1i) + tan(c + d*x)*4i - tan(c + d*x)^2))/(2*d)

________________________________________________________________________________________

sympy [A]  time = 0.36, size = 97, normalized size = 1.56 \[ - \frac {2 a^{2} \log {\left (e^{2 i d x} + e^{- 2 i c} \right )}}{d} + \frac {6 i a^{2} e^{2 i c} e^{2 i d x} + 4 i a^{2}}{- i d e^{4 i c} e^{4 i d x} - 2 i d e^{2 i c} e^{2 i d x} - i d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+I*a*tan(d*x+c))**2,x)

[Out]

-2*a**2*log(exp(2*I*d*x) + exp(-2*I*c))/d + (6*I*a**2*exp(2*I*c)*exp(2*I*d*x) + 4*I*a**2)/(-I*d*exp(4*I*c)*exp
(4*I*d*x) - 2*I*d*exp(2*I*c)*exp(2*I*d*x) - I*d)

________________________________________________________________________________________